•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	·	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•
•	•	•	•	•	•	•		> ├ -	iN		5	$\dot{\mathbf{a}}$	$\mathbf{\dot{n}}$	•	• •						• •									Ċ	•	•	•	•	•	•		•
•	•	•	•	•	•	•				3	5	Ž	U, I	A	N,	A	Ľĭ		I C	ļ	-X L	-		Ē				N	IC.	2	•	•	•	•	•	•		•
•	•	•	•	•	•	•												•	•	•	•			•		•	•	•	•	•	•	•	•	•	•	•		•
•		•		•	•	•	•	•	D)r, (Gre	gor	∼yV		Clar	·k	•	•					•	•	•				•			•						
																		•																				
									•F	all 2	201	8						•																				
•																			•								•											
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•
•	•	•	•_	• _	• _	• _	• _	• _	• _	• _	• _	• _	• _	• _	• _	• _	• _	• _	• _	• _	• _	•	•	• _	• _	• _	• _	• _	• _	• _	• _	• _	• _	• _	• _			•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
																																				_	_	

Driven damped oscillator: response to step/impulse

The differential equation $m\ddot{x} + c\dot{x} + kx = F_{ext}(t)$

Has transient and steady-state solutions $x(t) = x_c(t) + x_p(t)$

Driven damped oscillator: response to step/impulse

Step function force:

If initial conditions are such that $x(t_o) = 0$ and $dx(t_o)/dt = 0$, then

$$x(t = t_o) = \left[e^{-\gamma(t - t_o)} [A_1 \cos(\omega_d (t - t_o)) + A_2 \sin(\omega_d (t - t_o))] + \frac{a}{\omega_o^2} \right]_{t = t_o} = 0$$
$$\frac{dx(t)}{dt} \bigg|_{t = t_o} = 0$$

$$A_1 = -\frac{a}{\omega_o^2} \qquad A_2 = -\frac{\gamma a}{\omega_1 \omega_o^2}$$

Driven damped oscillator: response to step/impulse

 $I(t_{o,},t_{1})$

Impulse function force:

Solutions are of the form:
$$x(t) = \left\{ \frac{a}{\omega_o^2} - e^{-\gamma(t-t_o)} \left[\frac{a}{\omega_o^2} \cos(\omega_d (t-t_o)) + \frac{\gamma a}{\omega_1 \omega_o^2} \sin(\omega_d (t-t_o)) \right] \right\}$$
$$- \left\{ \frac{a}{\omega_o^2} - e^{-\gamma(t-t_o-\tau)} \left[\frac{a}{\omega_o^2} \cos(\omega_d (t-t_o-\tau)) + \frac{\gamma a}{\omega_1 \omega_o^2} \sin(\omega_d (t-t_o-\tau)) \right] \right\}$$

Hamilton's Principle

 Of all the possible paths along which a dynamical system may move from one point to another within a specified time interval (consistent with any constraints), the actual path followed is that which minimizes the time integral of the difference between the kinetic and potential energies.

Published in two papers, 1834, 1835

Calculus of Variations

