


Driven damped oscillator: response to step/impulse
The differential equation mX+cX+kx=F_, (t)

Has transient and steady-state solutions x(t) = X (t) + X (t)

Step function force: 4 H(tt)
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Solutions are of the form: x(t) = HES) {e 7RITA cos(a, (t—t,)) + A sin(aw, (t—t ))]+a}
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Driven damped oscillator: response to step/impulse

Step function force:
If initial conditions are such that x(t,) = 0 and dx(t,)/dt = 0, then

X(t=t)= {e”tt‘))[Alcos(a)OI (t—t,)) + A,sin(a, (t—t,))]+ iz =0
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Driven damped oscillator: response to step/impulse

- I(t. t
Impulse function force: 4 (to, )
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0, t>t t t, .

Solutions are of the form: X(t) = {az e’ (H")[iz cos(w, (t—t,))+ 4 a2 sin(@, (t—t, ))]}
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Hamilton’s Principle

* Of all the possible paths along which a dynamical system may
move from one point to another within a specified time interval
(consistent with any constraints), the actual path followed is
that which minimizes the time integral of the difference
between the kinetic and potential energies.

Published in two papers, 1834, 1835



Calculus of Variations

J= J. f(y(x), y'(x); x)dx Neighboring function: (parametric representation)
. y(a,x) = y(0,x) + a n(x) = y(x) + a n(x)

where y'(x)=dy/dx

If a =0, then y(0,x) = y(0,x) = y(x) is the
function that yields the extreme value in J

Has extreme values (is ““stationary’’) when
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Euler-Lagrange Equation
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n(xy) =nlx;) =0




